Login
Communauté Vinci
Extérieur
Si votre nom d'utilisateur ne se termine pas par @vinci.be ou @student.vinci.be, utilisez le formulaire ci-dessous pour accéder à votre compte de lecteur.
Titre : | Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System (2016) |
Auteurs : | V. Hiremath Shivayogi ; Stephen S. Intille ; Annemarie Kelleher |
Type de document : | Article |
Dans : | Archives of Physical Medicine and Rehabilitation (2016/7, 2016) |
Article en page(s) : | pp. 11461153 |
Langues: | Anglais |
Descripteurs : |
HE Vinci Activité motrice ; Epreuve d'effort ; Métabolisme énergétique ; Rééducation et réadaptation ; Smartphone ; Traumatismes de la moelle épinière |
Mots-clés: | Energy metabolism ; Statistics as Topic ; Statistiques comme sujet ; Exercise test ; Motor activity ; Ordiphone ; Spinal cord injuries ; Wheelchairs ; Fauteuils roulants |
Résumé : |
Objective To develop and evaluate energy expenditure (EE) estimation models for a physical activity monitoring system (PAMS) in manual wheelchair users with spinal cord injury (SCI). Design Cross-sectional study. Setting University-based laboratory environment, a semistructured environment at the National Veterans Wheelchair Games, and the participants' home environments. Participants Volunteer sample of manual wheelchair users with SCI (N=45). Intervention Participants were asked to perform 10 physical activities (PAs) of various intensities from a list. The PAMS consists of a gyroscope-based wheel rotation monitor (G-WRM) and an accelerometer device worn on the upper arm or on the wrist. Criterion EE using a portable metabolic cart and raw sensor data from PAMS were collected during each of these activities. Main Outcome Measures Estimated EE using custom models for manual wheelchair users based on either the G-WRM and arm accelerometer (PAMS-Arm) or the G-WRM and wrist accelerometer (PAMS-Wrist). Results EE estimation performance for the PAMS-Arm (average error + SD: −9.82%+37.03%) and PAMS-Wrist (−5.65%+32.61%) on the validation dataset indicated that both PAMS-Arm and PAMS-Wrist were able to estimate EE for a range of PAs with Conclusions Availability of PA monitors can assist wheelchair users to track PA levels, leading toward a healthier lifestyle. The new models we developed can estimate PA levels in manual wheelchair users with SCI in laboratory and community settings. |
Disponible en ligne : | Oui |
En ligne : | https://login.ezproxy.vinci.be/login?url=https://www.sciencedirect.com/science/article/pii/S0003999316001556 |