Login
Communauté Vinci
Extérieur
Si votre nom d'utilisateur ne se termine pas par @vinci.be ou @student.vinci.be, utilisez le formulaire ci-dessous pour accéder à votre compte de lecteur.
Titre : | Developing Artificial Neural Network Models to Predict Functioning One Year After Traumatic Spinal Cord Injury (2016) |
Auteurs : | Timothy Belliveau ; Alan M. Jette ; Subramani Seetharama |
Type de document : | Article |
Dans : | Archives of Physical Medicine and Rehabilitation (2016/10, 2016) |
Article en page(s) : | pp. 16631668 |
Langues: | Anglais |
Descripteurs : |
HE Vinci Activités de la vie quotidienne ; Informatique médicale ; Rééducation et réadaptation ; Traumatismes de la moelle épinière |
Mots-clés: | Activities of daily living ; Decision support techniques ; Techniques d'aide à la décision ; Medical informatics ; Spinal cord injuries |
Résumé : |
Objective To develop mathematical models for predicting level of independence with specific functional outcomes 1 year after discharge from inpatient rehabilitation for spinal cord injury. Design Statistical analyses using artificial neural networks and logistic regression. Setting Retrospective analysis of data from the national, multicenter Spinal Cord Injury Model Systems (SCIMS) Database. Participants Subjects (N=3142; mean age, 41.5y) with traumatic spinal cord injury who contributed data for the National SCIMS Database longitudinal outcomes studies. Interventions Not applicable. Main Outcome Measures Self-reported ambulation ability and FIM-derived indices of level of assistance required for self-care activities (ie, bed-chair transfers, bladder and bowel management, eating, toileting). Results Models for predicting ambulation status were highly accurate (>85% case classification accuracy; areas under the receiver operating characteristic curve between .86 and .90). Models for predicting nonambulation outcomes were moderately accurate (76%86% case classification accuracy; areas under the receiver operating characteristic curve between .70 and .82). The performance of models generated by artificial neural networks closely paralleled the performance of models analyzed using logistic regression constrained by the same independent variables. Conclusions After further prospective validation, such predictive models may allow clinicians to use data available at the time of admission to inpatient spinal cord injury rehabilitation to accurately predict longer-term ambulation status, and whether individual patients are likely to perform various self-care activities with or without assistance from another person. |
Disponible en ligne : | Oui |
En ligne : | https://login.ezproxy.vinci.be/login?url=https://www.sciencedirect.com/science/article/pii/S0003999316301526 |